AFFINE CURVATURE HOMOGENEOUS 3-DIMENSIONAL LORENTZ MANIFOLDS
نویسندگان
چکیده
منابع مشابه
Isometric Immersions into 3-dimensional Homogeneous Manifolds
We give a necessary and sufficient condition for a 2-dimensional Riemannian manifold to be locally isometrically immersed into a 3-dimensional homogeneous manifold with a 4-dimensional isometry group. The condition is expressed in terms of the metric, the second fundamental form, and data arising from an ambient Killing field. This class of 3-manifolds includes in particular the Berger spheres,...
متن کاملHomogeneous Lorentz Manifolds with Simple Isometry Group
Let H be a closed, noncompact subgroup of a simple Lie group G, such that G/H admits an invariant Lorentz metric. We show that if G = SO(2, n), with n ≥ 3, then the identity component H of H is conjugate to SO(1, n). Also, if G = SO(1, n), with n ≥ 3, then H is conjugate to SO(1, n− 1).
متن کاملHomogeneous symplectic manifolds with Ricci - type curvature
We consider invariant symplectic connections ∇ on homogeneous symplectic manifolds (M, ω) with curvature of Ricci type. Such connections are solutions of a variational problem studied by Bourgeois and Cahen, and provide an integrable almost complex structure on the bundle of almost complex structures compatible with the symplectic structure. If M is compact with finite fundamental group then (M...
متن کاملOn curvature homogeneous 4D Lorentzian manifolds
We prove that a four-dimensional Lorentzian manifold that is curvature homogeneous of order 3, or CH3 for short, is necessarily locally homogeneous. We also exhibit and classify four-dimensional Lorentzian, CH2 manifolds that are not homogeneous. PACS numbers: 04.20, 02.40 AMS classification scheme numbers: 53C50
متن کاملComplete k-Curvature Homogeneous Pseudo-Riemannian Manifolds
For k 2, we exhibit complete k-curvature homogeneous neutral signature pseudoRiemannian manifolds which are not locally affine homogeneous (and hence not locally homogeneous). All the local scalar Weyl invariants of these manifolds vanish. These manifolds are Ricci flat, Osserman, and Ivanov–Petrova. Mathematics Subject Classification (2000): 53B20.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Geometric Methods in Modern Physics
سال: 2005
ISSN: 0219-8878,1793-6977
DOI: 10.1142/s0219887805000776